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Abstract
Phenomenological scaling arguments suggest the existence of universal
amplitudes in the finite-size scaling of certain correlation lengths in strongly
anisotropic or dynamical phase transitions. For equilibrium systems, provided
that translation invariance and hyperscaling are valid, the Privman–Fisher
scaling form of isotropic equilibrium phase transitions is readily generalized.
For non-equilibrium systems, universality is shown analytically for directed
percolation and is tested numerically in the annihilation–coagulation model and
in the pair contact process with diffusion. In these models, for both periodic and
free boundary conditions, the universality of the finite-size scaling amplitude of
the leading relaxation time is checked. Amplitude universality reveals strong
transient effects along the active–inactive transition line in the pair contact
process.

PACS numbers: 6460H, 0570F, 8220D

1. Introduction

The notions of scaling and universality are central to the modern understanding of critical
phenomena: see, for example, [1–3]. Besides the well known universality of the critical
exponents, universality is also manifest for many critical amplitudes, as reviewed in [4]. Here
we are concerned with universal amplitudes which arise in finite-size scaling. For example,
consider a statistical system at equilibrium, such as a simple ferromagnet, which is described
by an isotropic and translation-invariant field theory in its continuum limit. Close to its critical
point, and on a lattice with finite extentL, Privman and Fisher [5] showed that in any dimension
d below the upper critical dimension d∗ the singular part of the free energy density f and the
inverse of the correlation lengths ξi satisfy the scaling form

f (t, h) = L−dY (z1, z2) ξ−1
i = L−1Si(z1, z2) (1)
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where z1 = C1tL
1/ν , z2 = C2hL

(β+γ )/ν are the scaling variables, the reduced temperature
t = (T − Tc)/Tc and the reduced magnetic field h = H/Tc describe the distance from
the critical point and β, γ, ν are the standard equilibrium critical exponents. The index i

distinguishes different correlation lengths: for example, i = σ for the spin–spin correlation
length or i = ε for the energy–energy correlation length in a simple ferromagnet. Furthermore,
the scaling functionsY andSi are universal functions and all non-universal properties of a given
model are condensed in the values of the non-universal metric factors C1 and C2. Although the
functions Y, Si are universal, they do depend on the boundary conditions and on the geometric
shape of the lattices under study.

It follows from (1) that if the model parameters are tuned to t = h = 0 so that the model
is at its bulk critical point, the finite-size scaling of free energy density f = L−dY (0, 0)
and of the inverse correlation lengths ξ−1

i = L−1Si(0, 0) is described in terms of universal
finite-size scaling amplitudes. This qualitative statement can be made quantitative in 2D
for systems defined on an infinitely long strip of finite width L through a, by now, classic
conformal invariance argument which, for example, explicitly relates the Si(0, 0) to known
critical exponents [6]. Concrete model studies have confirmed this many times, as reviewed
in [3,4]. More recently, similar relations have been conjectured also in 3D from the results of
numerical studies in toruslike [7, 8] and spherical geometries [9, 10].

When considering the situation of dynamical scaling, where time and space scale
differently, the extra degree of freedom might appear to exclude the presence of universal
finite-size scaling amplitudes in the sense of equation (1). Here, we shall ask under what
conditions the arguments of Privman and Fisher [5] can be generalized also to anisotropic
scaling—specifically, for a system undergoing a phase transition with anisotropic scaling which
is defined on a lattice with finite extent L in the spatial direction but is infinite in the temporal
direction. Then (under conditions to be detailed in sections 2 and 3) the spatial correlation
lengths should satisfy the scaling form

ξ−1
i,⊥ = L−1Si

(
C1tL

1/ν⊥ , C2hL
(β+γ )/ν⊥

)
(2)

in a notation analogous to (1) and where, again, the Si are universal functions.
While the generalization to equilibrium anisotropic scaling is a rather straightforward

extension of the methods valid for the isotropic case [5], the non-equilibrium situation is more
difficult. We shall show how correlation length amplitude universality can be established for
systems in the directed percolation universality class. Furthermore, numerical data from some
reaction–diffusion models are also in agreement with this and suggest that the scaling form (2)
might be generally valid.

This paper is organized as follows. In section 2, we present the scaling arguments leading
to the recognition of universal amplitudes for anisotropic scaling in equilibrium. In section 3
non-equilibrium dynamical scaling is discussed, with emphasis on the directed percolation
universality class. In section 4, we test the amplitude universality by analysing the finite-size
scaling of the leading inverse relaxation time in the annihilation–coagulation model and the
pair contact process with single-particle diffusion. In section 5 we give our conclusions. The
appendix contains the Bethe ansatz calculation of the relaxation time in an analytically solvable
special case.

2. Universal finite-size amplitudes in equilibrium

Consider an equilibrium system with anisotropic scaling in two distinct directions. Systems of
this kind have been known for a long time: for example, in Lifshitz points [11] or anisotropic
uniaxial magnets [12] (see [13–16] for reviews) or else in quantum phase transitions [17]
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(see [18] for a recent book). One can derive the phenomenological scaling of the physical
observables from the covariance of the correlators under scale transformations and reconstruct
the thermodynamics in this way [2,3]. In line with conventional phenomenological treatments
of strongly anisotropic scaling [19,20], we assume for the two-point functions the scaling form

Gi

(
r⊥, r‖; t, h

) = b−2xiGi

( r⊥
b
,
r‖
bθ

; tbyt , hbyh

)
(3)

where b is the rescaling factor, t, h refer to physical quantities like the reduced temperature and
the reduced magnetic field, θ is the anisotropy exponent and yt , yh, xi are scaling exponents.
The index i refers to different physical quantities of which the two-point function is formed:
for example, i = σ for the spin operator or i = ε for the energy density (for simplicity, we use
throughout a notation analogous to simple ferromagnets). At criticality, t = h = 0, and one
has

Gσ(r⊥, 0) ∼ r
−2xσ
⊥ Gσ(0, r‖) ∼ r

−2xσ /θ
‖

Gε(r⊥, 0) ∼ r
−2xε
⊥ Gε(0, r‖) ∼ r

−2xε/θ
‖ .

(4)

For a strongly anisotropic equilibrium system, r⊥ and r‖ correspond to different directions in
space. This case is, for example, realized at the Lifshitz point in spin systems with competing
interactions like the ANNNI model [15, 21]. For brevity, we refer to the directions r⊥ as
‘spatial’ and to the directions r‖ as ‘temporal’.

We use the equilibrium fluctuation-dissipation theorem

χ =
∫

dr‖ ddr⊥ Gσ(r⊥, r‖) C =
∫

dr‖ ddr⊥ Gε(r⊥, r‖) (5)

where d is the number of ‘spatial’ dimensions and χ,C are the susceptibility and specific
heat. We shall work with a single ‘temporal’ direction throughout, but generalizations are
obvious. Units are such that the critical temperature Tc = 1. From (3) and integrating, one
gets immediately the scaling forms for χ = χ(t, h) = −∂2f/∂h2 and for C = C(t, h) =
−∂2f/∂t2. Here f is the (singular part) free energy density. From the scaling of χ and C, it
should satisfy the scaling

f (t, h) = bθ+d−2xσ−2yhf (tbyt , hbyh) = bθ+d−2xε−2yt f (tbyt , hbyh). (6)

These two forms are consistent if xσ + yh = xε + yt = w. In fact, the above argument works
for any pair of scaling operators like σ, ε and their conjugated scaling fields h, t . Therefore,
the value w must be independent of all physical scaling operators which might be present in
a given model. Next, we define the standard static critical exponents α, β, γ as usual (see,
for example, [2]). Also, out of criticality, we expect an exponential decrease of the two-point
function, characterized by the correlation lengths ξ⊥,‖ ∼ t−ν⊥,‖ (at h = 0). From this, we
find that ν⊥ = 1/yt , θ = ν‖/ν⊥ and β + γ = yh/yt . From dimensional counting, we expect
w = d + θ and the free energy density then scales as

f (t, h) = b−d−θf (tbyt , hbyh). (7)

As usual, we explicitly assume the absence of dangerously irrelevant scaling fields [1, 5, 19].
We then recover the hyperscaling relation 2−α = ν‖ +dν⊥. The common scaling form for the
thermodynamics is found by scaling out b and introducing the conventional critical exponents

f (t, h) = A1|t |2−αW± (
A2h|t |−β−γ

)
(8)

where W± are the universal scaling functions which are obtained for t > 0 and t < 0,
respectively, and A1,2 are non-universal metric constants. At this level, the anisotropy of the
scaling of the two-point function only appears in the generalized form of the hyperscaling
relation.
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Equation (8) will be the starting point for our discussion of finite-size scaling. In what
follows, we consider a situation where the ‘spatial’ directions are of finite extent L whereas the
‘temporal’ direction remains infinite. In the same spirit as Privman and Fisher [5], we assume
that the finite-size scaling behaviour is governed by the ‘spatial’ correlation length ξ⊥ only and
we write

f (t, h;L) = A1|t |2−αW±(
A2h|t |−β−γ ;Lξ−1

⊥
)

(9)

where the bulk ‘spatial’ correlation length ξ⊥ = ξ0t
−ν⊥ . Note that there is no extra metric

factor in the second argument of W±, whereas ξ0 is non-universal. To simplify the notation,
we assume that there is no phase transition for L finite, but this restriction could be removed
analogously to the equilibrium case [22]. We emphasize that the ‘temporal’ direction remains
infinite, otherwise we would have to deal with two distinct finite length scales.

Following the ideas developed by Privman and Fisher [5], we have to trace the non-
universal constants, taking into account the anisotropic scaling. For that, it is sufficient to
study the ‘spatially’ infinite system. We expect the scaling form of the connected spin–spin
correlator, see also (3),

Gσ(r⊥, r‖; t, h) = D0D1r
−2xσ
⊥ X± (

r⊥/ξ⊥,D0r‖/ξθ
⊥;D2h|t |−β−γ

)
(10)

where X± is a universal scaling function and D0,1,2 are non-universal metric factors. From the
fluctuation-dissipation theorem (5) one has

χ(t, h) = D1ξ
γ/ν⊥
⊥ X̃± (

D2h|t |−β−γ
)
. (11)

where X̃± is a new scaling function obtained from X±. Now, for the non-connected spin–spin
correlator, one has in the same way, introducing new universal scaling functions Z±

*σ (r⊥, r‖; t, h) = D0D1r
−2xσ
⊥ Z± (

r⊥/ξ⊥,D0r‖/ξθ
⊥;D2h|t |−β−γ

)
. (12)

At this point, we assume translation invariance with respect to r⊥ and r‖. Therefore, there
should exist a mean magnetization m which is independent of r⊥ and r‖ and which can be
found considering *σ at large separations r⊥, r‖:

*σ (r⊥, r‖; t, h) = D0D1ξ
−2xσ
⊥ Z± (

1,D0r‖/rθ⊥;D2h|t |−β−γ
)

(13)

↓ ↓
m2(t, h) = D0D1ξ

−2xσ
⊥ Z̃± (

D2h|t |−β−γ
)

(14)

where the arrow indicates taking the limit of large ‘spatio-temporal’ separations. Because of
translation invariance, m2 should become independent of D0. On the other hand, applying
standard thermodynamics to the free energy (8) yields

m(t, h) = A1A2|t |βW±
1

(
A2h|t |−β−γ

)
(15)

χ(t, h) = A1A
2
2|t |−γW±

2

(
A2h|t |−β−γ

)
(16)

where W±
n (x) = dnW±(x)/dxn.

We now compare equations (11) and (16). Letting first h = 0, we find

D1ξ
γ/ν⊥
0 = A1A

2
2U1. (17)

Comparing the arguments of the scaling functions, we have

D2 = A2U2. (18)

Next, we compare equations (14) and (15) and find for h = 0 that

D0D1ξ
−2β/ν⊥
0 = A2

1A
2
2U3 (19)
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(since xσ = β/ν⊥). Here, U1,2,3 are universal constants whose universality follows from the
universality of the scaling functions considered. Using the hyperscaling relation γ + 2β =
(d + θ)ν⊥, we find that

A1ξ
d+θ
0 D−1

0 = Q1 = U1/U3

D2A
−1
2 = Q2 = U2

D
γ/(ν⊥(d+θ))
0 D1A

−1−γ /(ν⊥(d+θ))
1 A−2

2 = Q3 = U
1−γ /(ν⊥(d+θ))
1 U

γ/(ν⊥(d+θ))
3

(20)

and the Q1,2,3 are universal constants.
Finally, we come back to the finite-size scaling behaviour. In equation (9), we replace ξ0

by A1 using (20). Scaling out L and using again hyperscaling, it is easy to arrive at the scaling
form

f (t, h;L) = L−d−θD0Y
(
C1tL

1/ν⊥ , C2hL
(β+γ )/ν⊥

)
(21)

where Y is a universal scaling function and C1,2 are non-universal metric factors related to
A1,2. In contrast with the isotropic situation (1), we see that the finite-size scaling amplitude
of the free energy is no longer universal. Furthermore, since ξ‖ = ξθ

⊥/D0, we have

f (t, 0;L)ξd
⊥(t, 0;L)ξ‖(t, 0;L) = D−1

0 f (t, 0;L)ξd+θ
⊥ (t, 0;L) →

t→0
univ. constant (22)

which holds because of (20). Therefore, we expect for the ‘spatial’ correlation length

ξ−1
⊥ = L−1S

(
C1tL

1/ν⊥ , C2hL
(β+γ )/ν⊥

)
(23)

with a universal scaling function S and the same metric factors C1,2 as in (21). While this
analysis was phrased in terms of the transverse spin–spin correlation length ξ⊥ = ξ⊥,σ , similar
arguments should hold for the ‘spatial’ correlation lengths ξ⊥,i of any other physical observable,
with S in (23) being replaced by an appropriate function Si . The scaling functions Y and Si

should depend on the boundary conditions and, if d � 2, on the shape of the finite ‘spatial’
domain. Note that L refers here to the physical length, which cannot be equated to the number
of sites N times the lattice constant in non-square lattices [5,22]. For a recent example of this
in the 2D Ising model context, see [23].

Finally, the ‘temporal’ correlation lengths ξ‖,i should read

ξ−1
‖,i = L−θD0Ri

(
C1tL

1/ν⊥ , C2hL
(β+γ )/ν⊥

)
(24)

with universal scaling functions Ri and again the same metric factors C1,2 as before. The value
ofD0 is related to the dimensionful constant which occurs in the energy–momentum dispersion
relation of the underlying continuum field theory and cannot be found straightforwardly.
However, at criticality (t = h = 0), ratios of ‘temporal’ correlation lengths ξ‖,i/ξ‖,j should
tend to universal constants in the L → ∞ limit. The universality of these ratios would not
have immediately been obvious from straightforward finite-size scaling.

Equation (23) is the main result of this section. It provides the natural generalization of
the Privman–Fisher form (1) to the case of equilibrium anisotropic scaling. It is immediate
to include further physical parameters into the analysis. We emphasize that (i) translation
invariance and (ii) hyperscaling was required in deriving this result. We stress that we
considered finite sizes in the ‘spatial’ direction and obtain universality for the spatial correlation
lengths ξ⊥,i only.

3. Universal finite-size amplitudes out of equilibrium

We have seen that in equilibrium systems with anisotropic scaling and in a geometry where the
‘spatial’ directions are of finite extent L while the ‘temporal’ direction is infinite, the ‘spatial’
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correlation lengths have a universal finite-size scaling amplitude. We now ask whether this
result generalizes towards more general forms of dynamical scaling, without appealing to
the special properties of equilibrium systems. Fluctuations in non-equilibrium systems can be
treated in terms of dynamic functionals via Martin–Siggia–Rose theory [24–27]. To be specific,
we shall work in a setting of reaction–diffusion processes, of which directed percolation is a
common example: see [28–31] for reviews. We shall continue to denote time by r‖ and space
by r⊥. As before, t measures the distance from the steady-state critical point and h denotes
an external field (for example, for directed percolation t = p − pc and h is the rate of a
process ∅ → A). For the sake of technical simplicity, we shall assume translation invariance
throughout. As in equilibrium, we have to trace the non-universal metric factors and this is
most conveniently done in the bulk.

Physical quantities of interest are the mean particle density ρ, the survival probability P

and the pair connectedness function G = G(r ′
⊥, r

′
‖; r⊥, r‖), which is defined as the probability

that the sites (r ′
⊥, r

′
‖) and (r⊥, r‖) are connected by a direct path [29,30]. Because of translation

invariance G = G(r ′
⊥ − r⊥, r ′

‖ − r‖), which will be used throughout. These quantities are
expected to satisfy the scaling behaviour

ρ(r⊥, r‖; t, h) = b−xρ ρ
( r⊥
b
,
r‖
bz

; tbyt , hbyh

)
= D1ρ ξ

−xρ
⊥ E±

(
r⊥
ξ⊥

,D0
r‖
ξz
⊥

;D2h|t |−yh/yt

)

P(r⊥, r‖; t, h) = b−xP P
( r⊥
b
,
r‖
bz

; tbyt , hbyh

)
= D1P ξ

−xP
⊥ F±

(
r⊥
ξ⊥

,D0
r‖
ξz
⊥

;D2h|t |−yh/yt

)

G(r⊥, r‖; t, h) = b−xGG
( r⊥
b
,
r‖
bz

; tbyt , hbyh

)
= D1G ξ

−xG
⊥ G±

(
r⊥
ξ⊥

,D0
r‖
ξz
⊥

;D2h|t |−yh/yt

)
(25)

where the x are scaling dimensions and yt,h renormalization group eigenvalues, the D are non-
universal metric factors, E,F,G are universal scaling functions where the index distinguishes
between the cases t > 0 and t < 0, ξ⊥ = ξ0|t |−ν⊥ is the spatial, ξ‖ = ξz

⊥/D0 is the temporal
correlation length and z is the dynamical exponent (as before, yt = 1/ν⊥).

In the steady state, and for h = 0, one expects ρ ∼ tβ and P ∼ tβ
′
. In general, the

two exponents β and β ′ are distinct from each other. For spatial translation invariance, the
dependence on r⊥ drops out for both ρ and P and in the steady state (i.e. r‖ → ∞) one has

ρ(t, h) = D1ρ ξ
−β/ν⊥
0 Ẽ± (

D2h|t |−yh/yt
) |t |β

P (t, h) = D1P ξ
−β ′/ν⊥
0 F̃± (

D2h|t |−yh/yt
) |t |β ′ (26)

where xρ = β/ν⊥, xP = β ′/ν⊥ and Ẽ± = limr‖→∞ E± and similarly for F . We also consider
the auto-connectedness (that is r⊥ = r ′

⊥) in the steady state

G(0,∞; t, h) =: G(t, h) = D1P ξ
−xG
0 G̃± (

D2h|t |−yh/yt
) |t |xGν⊥ . (27)

In the active phase (t > 0), the surviving clusters will create an average density ∼|t |β in the
interior of the spreading cone. Therefore, the auto-connectedness should in the steady state
saturate at the value [32]

G(t, h) = ρ(t, h)P (t, h). (28)

Comparison of the scaling forms then yields, setting h = 0,

xG = (β + β ′)/ν⊥ D1G = D1ρD1P
Ẽ±(0)F̃±(0)

G̃±(0)
. (29)

Usually, xG = d − θz is expressed in terms of the initial critical slip exponent θ [33], which
makes it apparent that expression (29) is in fact a generalized hyperscaling relation [29,30,32].
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Next, we consider the total mass M of the cluster [30], given by

M(t, h) :=
∫

Rd

ddr⊥
∫ ∞

0
dr‖ G(r⊥, r‖; t, h) = D1G

D0
ξ
γ/ν⊥
⊥ G± (

D2h|t |−yh/yt
)

(30)

where equation (25) was used and G±
is a new universal function related to G±. Also

γ = dν⊥ + ν‖ − β − β ′ (31)

which is the analogue of the hyperscaling relation of the equilibrium systems.
While the discussion so far has been completely general, we now appeal to two properties

which are valid for systems in the directed percolation universality class, but need not be
generically valid. First, we consider a directed percolation process in the presence of a weak
field h (physically, h parametrizes the rate of a particle creation process ∅ → A). A site at
a given time becomes active if it is connected with at least one active site in the past, where
a particle was created by the field. The number of such sites is equal to the cluster size; the
probability to become active is given by the density [30]

ρ(t, h) � 1 − (1 − h)M(t,h) � hM(t, h) (32)

for h small. Therefore,

M(t, 0) = ∂ρ(t, h)

∂h

∣∣∣∣
h=0

. (33)

Comparison with the scaling forms for ρ and M leads to

yh/yt = β + γ D1P = D0D2ξ
−(β+γ )/ν⊥
0 A± (34)

where A± is an universal amplitude. Second, directed percolation is special in the sense that
there is a ‘duality’ symmetry which can be used to show that [34]

ρ(t, h) = P(t, h). (35)

As a consequence, β = β ′ and D1ρ = D1P for directed percolation and we thus have,
combining equations (26), (30), (34),

ρ(t, h) = D0D2ξ
−d−z
0 |t |βM̂±

1

(
D2h|t |−β−γ

)
M(t, h) = D0D

2
2ξ

−d−z
0 |t |−γ M̂±

2

(
D2h|t |−β−γ

) (36)

with universal functions M̂±
n (x) = dnM̂±(x)/dxn and where the hyperscaling relation

equation (31) has been used. We therefore recover the analogues of equations (15), (16) found
in equilibrium. Finally, we define a new function µ = µ(t, h) by ρ(t, h) = ∂µ(t, h)/∂h,
which implies

µ(t, h) = D0ξ
−d−z
0 |t |(d+z)ν⊥M̂± (

D2h|t |−β−γ
)
. (37)

In particular, as we did before at equilibrium, we have because of ξ‖ = ξz
⊥/D0 that

µ(t, 0)ξd
⊥(t, 0)ξ‖(t, 0) →

t→0
univ. constant (38)

which is indeed the analogue of the result (22).
Lastly, we consider a geometry of finite size L in space but of infinite extent in time.

Again, by analogy with section 2, we postulate that in this finite geometry merely the scaling
functions are modified

M̂±
n = M̂±

n

(
D2h|t |−β−γ ;Lξ−1

⊥
)

(39)

and without introducing any further metric factor. Indeed, we can then scale out L and,
because of equation (38), arrive at the same scaling forms (23), (24) as had been found before
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for the spatial and temporal correlation lengths in anisotropic equilibrium systems, at least for
systems in the directed percolation universality class. Since directed percolation is known to
be equivalent to an equilibrium (in fact, purely geometrical) problem, the existence of universal
finite-size amplitudes in this class is not too surprising and might have been anticipated from
the discussion in the previous section.

While the spatial correlation length ξ⊥ may not be always a very accessible quantity, its
universality may also be tested by considering the spatial moment (let t = h = 0 for simplicity)

R
(n)
L := 〈rn⊥〉 =

∫
7(L)

ddr⊥
∫ ∞

0 dr‖ rn⊥G(r⊥, r‖;L/ξ⊥)∫
7(L)

ddr⊥
∫ ∞

0 dr‖ G(r⊥, r‖;L/ξ⊥)

= ξn
⊥

∫
7(L/ξ⊥)

ddr⊥
∫ ∞

0 dr‖ r
n−xG
⊥ G±(r⊥, r‖;L/ξ⊥)∫

7(L/ξ⊥)
ddr⊥

∫ ∞
0 dr‖ r

−xG
⊥ G±(r⊥, r‖;L/ξ⊥)

= ξn
⊥8n(L/ξ⊥)

= Ln8̃n(L/ξ⊥) (40)

where 7(L) is a d-dimensional hypercube of linear extent L and 8n and 8̃n are universal
functions. Since there is no metric factor in the argument of 8̃n, the universality of the finite-size
scaling amplitude of ξ⊥ is equivalent to the universality of the finite-size scaling amplitude of
R

(n)
L (on the other hand, the temporal moment 〈rn‖ 〉 ∼ (D−1

0 Lz)n has a non-universal amplitude).
The universality of these moments is a somewhat stronger statement than the universality of
certain ratios of moments 〈ρn〉 of the particle density ρ which has recently been verified in 1D
and in 2D for several models in the directed percolation universality class [35].

In summary, we have seen that for systems in the directed percolation universality class,
the special properties equations (33), (35), taken together with the general relation (28), are
sufficent to rederive the universal finite-size scaling form (23) of the spatial correlation length,
in spite of the absence of the fluctuation-dissipation relation. It is not yet clear whether there
exist more general arguments which would permit us to arrive at the same result without
appealing to either (33) or (35). However, we shall in the next section present numerical
evidence that the universal finite-size scaling forms (23) for ξ⊥ or (24) for ξ‖ might be more
generally valid.

4. Reaction–diffusion processes

The new information contained in (23) which goes beyond the standard renormalization group
ideas is the universality of the finite-size scaling amplitude Lξ−1

⊥ precisely at criticality (and
similarly the universality of all ratios ξ‖,i/ξ‖,j ). Since, for the time being, the derivation of
this universality for non-equilibrium systems appears to be restricted to directed percolation,
we use the pair contact process and the annihilation–coagulation model to test the universality
hypothesis advanced in sections 2 and 3 quantitatively.

The pair contact process [36] has been intensively studied recently. It is a reaction–
diffusion system, where particles move and react on a lattice. While each lattice site can be
either empty or be occupied by a single particle, the following microscopic moves are permitted
(referred to as PCPD):{

AA∅ → AAA

∅AA → AAA
with rate

(1 − p)(1 − d)

2
AA → ∅∅ with rate p(1 − d) (41)

A∅ ↔ ∅A with rate d
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Figure 1. Steady-state phase diagram of the pair contact process. The dotted lines are the phase
boundaries according to pair mean-field theory, while the full curve gives the active–inactive
transition in 1D. DP marks the steady-state transition in the directed percolation universality class
at d = 0.

and are parametrized by the diffusion constant d and the pair annihilation rate p.
While in the case without diffusion (d = 0), the steady-state transition between the active

and the absorbing state was found to be in the directed percolation universality class [35–37],
the effects of adding diffusion were first studied using field-theoretical methods, considering a
bosonic field theory without any restriction on the number of particles per site (which leads to a
divergent particle density in the active phase) [38]. It was shown that the entire absorbing phase
is critical and in the universality class of diffusion–annihilation (see below). Because of the non-
renormalizability of the underlying field theory, no quantitative information about the transition
towards the active state could be obtained. The first quantitative information was obtained [39]
through the use of density matrix renormalization group (DMRG) techniques [40–42]. The
steady-state phase diagram is shown in figure 1 and there is a general agreement between
DMRG and Monte Carlo studies on the location of the critical point pc(d) [39, 43–46].

The annihilation–coagulation model is formulated in the same way, with the allowed
reactions

AA → A∅, ∅A with rate dγ

AA → ∅∅ with rate 2dα (42)

A∅ ↔ ∅A with rate d

parametrized by α and γ for annihilation and coagulation, respectively. The long-time
behaviour of the model is always algebraic, i.e. the mean particle density ρ(t) ∼ t−1/2 in
1D: see [28–31, 47] and references therein.

In this paper, we use the Hamiltonian formulation of reaction–diffusion processes [48–52],
which starts from the master equation

∂|P(t)〉
∂t

= −H |P(t)〉 (43)

where |P(t)〉 a state vector and H is referred to as ‘quantum’ Hamiltonian (for recent reviews,
see [30, 47]). For a chain with L sites, H is a stochastic 2L × 2L matrix with elements

〈σ |H |τ 〉 = −w(τ → σ) 〈σ |H |σ 〉 =
∑
τ �=σ

w(σ → τ) (44)
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where |σ 〉, |τ 〉 are the state vectors of the particle configurations σ and τ , with w the transition
rate. It is well known that the ground state energy of the pair contact process E0 = E1 = 0
is twofold degenerate for d �= 0 [39]. The energy gap * = E2 − E0, calculated from the
second excited state, is the inverse relaxation time or, in the notation of section 2, the inverse
‘temporal’ correlation length ξ−1

‖ = * towards the steady state. We shall consider both free
and periodic boundary conditions.

(1) First, we discuss the pair contact process (41). We find the following, surprisingly
simple, finite-size scaling behaviour for the gap *L in the entire absorbing phase, that is, for
all p � pc(d), namely

*L = adL−2
(
1 + O

(
L−1

))
(45)

where a depends on the boundary condition

a =
{

2π2 periodic
π2 free

(46)

but is independent of both p and d .
Before deriving (46), we argue that this result confirms the universality of the correlation

length amplitudes discussed in section 3. Indeed, for systems in the diffusion–annihilation
universality class already the inverse ‘temporal’ correlation length * has a universal amplitude,
provided that the value of the diffusion constant d is fixed. The universality of the reaction–
diffusion process 2A → ∅ has been discussed using field theory methods [53–55]. From the
renormalization group equations, it can be shown that the value of the diffusion constant d is
not renormalized through the effects of the interaction of the particles and simply stays at its
bare value. The bare value of d is the value it has in the original lattice formulation of the
problem. Since the diffusion constant sets the time scale, we expect for the gap * ∼ L−2d.
These calculations [53–55] apply to the process 2A → ∅ which corresponds to the case p = 1
in the model at hand. However, it is known that in the entire absorbing phase, the extra
interactions coming from the reaction 2A → 3A are irrelevant [38]. Therefore, they should
not modify the value of d (since we only consider here the inactive phase, we leave aside
the question of how d evolves under renormalization in the active phase). Consequently, the
proportionality of * and d in equation (45) comes from the non-renormalization of d. That
non-renormalization is a special property of the diffusion–annihilation universality class. That
is consistent with the scaling form (24) for ξ‖ and we can identify D0 = d. Finally, the
p-independence of the amplitude a in equation (46) is an example of the universality of the
finite-size scaling amplitude R(0, 0) in equation (24), which in turn implies the universality
of S(0, 0) in equation (23).

We now derive equations (45), (46). We need the lowest non-vanishing eigenvalue* = E2

of the quantum Hamiltonian H . For p = 1, it turns out that the spectrum of H is equal to
the spectrum of an XXZ Heisenberg quantum chain HXXZ . The lowest gap of HXXZ can be
found from the coordinate Bethe ansatz [56,57]. This reproduces equation (46) for p = 1 and
all values of d . The details of the calculation are presented in the appendix.

We point out, however, that for d = 1/2 and free boundary conditions only, the Bethe
ansatz equations have a closed-form solution. The exact lowest gap for any finite number of
sites L is

*L = 1 − cos
π

L + 1
d = 1

2 p = 1 free b.c. (47)

in agreement with (45), (46). This had been conjectured before on the basis of numerical
data [42] (closed-form solutions for slightly different = = 1/2 XXZ chains have been
discussed recently in [58]).
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For p �= 1, the PCPD is not related to any known integrable model and we revert to
numerical methods. We consider the normalized amplitudes

A
(P)
L = L2*L/(2π

2d) A
(F)
L = L2*L/(π

2d) (48)

defined for periodic (P) and free (F) boundary conditions, respectively. If and only if (46) is
correct, the amplitudes A

(P)
L and A

(F)
L should converge towards unity in the L → ∞ limit.

In table 1 we show data for periodic boundary conditions. These were obtained from
diagonalizing H through the standard Arnoldi algorithm [3]. Translation and parity invariance
were used to blockdiagonalize H , and lead to matrices of size ≈2L/(2L) for L sites. In table 2
data for free boundary conditions are shown. They were obtained by applying the DMRG
method [40–42] to the pair contact process [39].

Clearly, the data for both A
(P)
L and A

(F)
L at finite values of L are, in general, quite far

away from unity. We also see that the raw data tend to be closer to unity for smaller values
of d. However, since the systematic variation of these amplitudes with L is huge, a precise
L → ∞ extrapolation must be performed. We have used the BST extrapolation algorithm [59]
which has established itself as a reliable and precise method for the extrapolation of finite-lattice
sequences arising in both equilibrium and non-equilibrium critical phenomena. The parameter
ω describes the (effective) leading finite-size correction of a sequence AL = A∞ +A1L

−ω + · · ·
and must be chosen to optimize convergence [3, 59].

In all cases, we find that the extrapolated amplitudes

A(P)
∞ := lim

L→∞
A

(P)
L � 1 A(F)

∞ := lim
L→∞

A
(F)
L � 1 (49)

within the numerical accuracy of the extrapolation and in full agreement with equation (46).
The need for L → ∞ extrapolation also means that the universal infinite-size amplitudes may
be hard to see in, say, Monte Carlo simulations. We also give the effective value of ω for each
sequence. In view of the exact result ω = 1 for p = 1, see (57), (62), it is satisfying that ω
stays close to one.

In general, for a given d convergence is best for p close to one and decreases when p

is lowered. The lowest values of p given in table 1 are more or less the smallest ones for
which a reliable convergence of the amplitudes could still be observed. In varying d, we see
that data converge best for relatively small d and that close to d = 1 the crossover towards
mean-field behaviour [39] affects the finite-size scaling of the amplitudes. Comparing the data
for periodic and free boundary conditions for the same values of p and d, we observe that
the A

(F)
∞ are closer to unity than the A

(P)
∞ for the same value of L (and in contrast to the usual

expectation that finite-size corrections should be smallest for periodic boundary conditions).
For p = 1, these remarks are confirmed analytically, see equations (57), (62).

All in all, the extrapolated amplitudes converge over a large range of values of p and d

towards unity, in agreement with (46). Therefore, the PCPD in the inactive phase confirms
the universality of the correlation length finite-size scaling amplitude as derived in section 2.
Since the entire inactive phase is expected to be in the same universality class, that result should
apply even to those portions of the inactive phase where our relatively short chains did not
permit us to carry out a precise extrapolation.

(2) Second, we briefly discuss the annihilation–coagulation model (42). It is well
known [53, 60–63] that the quantum Hamiltonian H = H(α, γ ) is similar to the quantum
Hamiltonian H(α + γ, 0) of pure annihilation. Therefore, equations (45), (46) also apply to
this model, independently of α and γ . If we take α + γ = 1, the steady-state particle density
amplitude limL→∞ Lρ(L) = (1 + α/γ )/(1 + 2α/γ ) depends on the branching ratio α/γ and
is not universal.

Equations (45), (46) state that for the finite-size amplitude of * is independent of the
ratio r = α + γ of the reaction rate and the diffusion rate d. In the light of the universality
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Table 1. Estimates for the normalized amplitude A
(P)
L = L2*L/(2π2d) for several values of p

and d and periodic boundary conditions. The rows labelled ∞ give the L → ∞ extrapolations
obtained from the BST extrapolation algorithm [59] and ω is the effective correction exponent used
in these extrapolations. In some cases the sequences are not monotonic: this is indicated by a ∗ at
the value of ω used.

d = 0.10 L p = 0.16 p = 0.25 p = 0.50 p = 0.75

6 0.727 447 5706 1.101 416 0997 1.554 336 3873 1.716 614 4988
8 0.679 199 2625 0.995 170 4118 1.357 553 7598 1.481 977 4944

10 0.655 985 9469 0.950 543 1819 1.264 899 2305 1.363 137 2237
12 0.648 003 5923 0.931 854 2215 1.211 075 9662 1.291 306 9885
14 0.648 326 5043 0.924 701 9281 1.175 771 0267 1.243 193 8517
16 0.653 099 0879 0.922 980 0785 1.150 754 7386 1.208 715 7132
18 0.660 255 1037 0.923 896 6184 1.132 063 0670 1.182 796 3304
20 0.668 654 5657 0.926 088 6593 1.117 546 6079 1.162 601 1550

∞ 1.04(3) 1.00(3) 0.999 9(1) 1.000 1(2)

ω 1∗ 1.11∗ 1 1.0032

d = 0.30 L p = 0.20 p = 0.30 p = 0.50 p = 0.75

6 0.339 373 6439 0.556 511 9224 0.844 899 9662 1.020 574 3378
8 0.370 839 6385 0.601 675 4416 0.866 477 2095 1.016 477 5547

10 0.400 127 4702 0.638 527 9575 0.883 674 5934 1.013 732 8840
12 0.428 782 3558 0.669 897 9484 0.897 565 6827 1.011 822 6252
14 0.456 239 1902 0.696 709 7472 0.908 838 0138 1.010 411 7821
16 0.482 057 3931 0.719 771 9798 0.918 074 4129 1.009 319 8954
18 0.506 069 2639 0.739 768 2858 0.925 731 1017 1.008 445 2275
20 0.528 275 7026 0.757 245 0703 0.932 153 8891 1.007 726 2607

∞ 0.96(4) 1.000 1(1) 1.000 0(3) 0.999 99(3)

ω 1.085 1.074 1 1

d = 0.50 L p = 0.30 p = 0.40 p = 0.50 p = 0.99

6 0.263 446 3944 0.359 404 3077 0.436 287 1259 0.595 044 1871
8 0.307 102 2508 0.415 675 3699 0.497 526 3719 0.658 240 3419

10 0.348 030 0086 0.464 943 2503 0.548 566 8186 0.705 423 5500
12 0.386 135 3468 0.507 628 2318 0.590 971 5317 0.741 660 3392
14 0.421 076 3888 0.544 527 4246 0.626 486 5185 0.770 225 8735
16 0.452 860 1529 0.576 561 6531 0.656 561 5085 0.793 256 8153
18 0.481 689 0281 0.604 555 9890 0.682 310 5808 0.812 184 8167
20 0.507 840 8510 0.629 193 3618 0.704 579 0759 0.827 997 0372

∞ 1.00(2) 1.007(2) 0.996(2) 1.000 2(2)

ω 0.98 1 1.067 0.994

d = 0.90 L p = 0.50 p = 0.75 p = 0.90 p = 0.95

6 0.054 172 2289 0.072 900 0818 0.078 239 0633 0.079 010 3464
8 0.067 136 3692 0.090 780 2309 0.097 580 9620 0.098 588 1954

10 0.080 195 4402 0.108 417 0765 0.116 509 3810 0.117 719 1004
12 0.093 163 6953 0.125 631 1545 0.134 889 3588 0.136 279 1328
14 0.105 963 5357 0.142 369 2854 0.152 687 4700 0.154 239 3436
16 0.118 558 9168 0.158 617 7799 0.169 902 7666 0.171 601 4095
18 0.130 931 1714 0.174 378 5534 0.186 546 8998 0.188 378 8379
20 0.143 070 2131 0.189 660 5667 0.202 636 8456 0.204 590 0568

∞ 1.01(1) 0.999(2) 1.001(3) 1.001(2)

ω 1.081 1.08 1.078 1.079
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Table 2. Estimates for the normalized amplitude A
(F)
L = L2*L/(π

2d) for several values of p and
d and free boundary conditions, and the L → ∞ extrapolation. When the DMRG algorithm did
not yield stable results the corresponding finite-size entries are left empty.

p = 0.40 L d = 0.333 d = 0.50 d = 0.666

12 0.857 257 7379 0.672 574 7038 0.458 393 5580
14 0.873 759 0556 0.705 384 0790 0.498 181 5051
16 0.886 994 5040 0.732 284 0138 0.532 754 1136
18 0.897 825 1485 0.754 778 5176 0.563 035 3770
20 0.906 836 1253 0.773 829 2422 0.589 752 4204
22 0.914 440 1079 0.790 179 8864 0.613 482 6888
24 0.920 935 8777 0.804 358 3176 0.634 689 0106
26 0.926 544 7049 0.816 768 0285 0.653 745 5074
28 0.931 433 5748 0.827 717 7891 0.670 957 4987
30 0.935 731 8117 0.837 449 1423 0.686 576 1177
32 0.939 573 3083 0.846 152 2447 0.700 807 8882
34 0.942 938 8328 0.853 990 6968 0.713 831 4424

∞ 0.999(3) 0.999 9(5) 0.999 5(9)

ω 1.08 1.024 5 1.029

p = 0.50 L d = 0.333 d = 0.50 d = 0.666

12 0.912 735 0184 0.739 584 3960 0.525 415 1900
14 0.923 969 8644 0.768 683 0752 0.565 606 3523
16 0.932 734 9799 0.791 983 2846 0.599 694 9840
18 0.939 754 7158 0.811 062 5710 0.628 949 6021
20 0.945 494 6130 0.826 970 0162 0.654 314 7959
22 0.950 270 1952 0.840 432 5820 0.676 506 7894
24 0.954 302 0404 0.851 970 8198 0.696 078 0276
26 0.957 754 2440 0.861 967 6543 0.713 461 0277
28 0.960 729 0383 0.870 709 7768 0.728 999 0177
30 0.963 322 6275 0.878 420 2612 0.742 967 9437
32 0.885 271 7697 0.755 590 6209
34 0.891 392 4472 0.767 051 4417

∞ 0.999 6(6) 0.999 6(5) 0.999 6(5)

ω 1.092 5 1.016 5 1.019 1

d = 0.90 L p = 0.60 p = 0.70 p = 0.80 p = 0.90

12 0.186 316 7451 0.204 252 8770 0.217 223 7514 0.225 570 5980
14 0.211 945 6015 0.231 756 9546 0.245 960 0505 0.254 987 3770
16 0.236 219 9311 0.257 633 3440 0.272 873 7999 0.282 470 6979
18 0.259 223 7747 0.282 003 4649 0.298 117 9611 0.308 186 7029
20 0.281 037 2384 0.304 979 4681 0.321 824 9399 0.332 284 8660
22 0.301 736 7417 0.326 664 5014 0.344 118 9613 0.354 898 9577
24 0.321 393 9696 0.347 148 2795 0.365 111 7354 0.376 153 4335
26 0.340 075 9780 0.366 533 6490 0.384 904 6790 0.396 155 2283
28 0.357 845 5055 0.384 883 3645 0.403 589 9034 0.415 004 6251
30 0.374 829 5723 0.402 277 8186 0.421 250 4431 0.432 791 4966
32 0.390 877 4672 0.418 786 3074 0.437 863 9789 0.449 586 3889
34 0.406 244 1268 0.434 465 0723

∞ 0.986(20) 0.98(3) 0.983(15) 0.984(15)

ω 1.09 1.103 1.100 1.099
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hypothesis of sections 2 and 3, the observed r-independence of the amplitude L2* means that
the critical exponents of the pair annihilation process 2A → ∅ (or the equivalent coagulation
process 2A → A [53, 60]) should also be independent of r , i.e. the mean particle density
ρ(t) ∼ t−δ with δ = 1/2. While that had been anticipated long ago by many people, exact
lattice calculations only exist for r = 1, see [30, 47]. The only published verifications of
the r-independence of δ we are aware of either used purely numerical methods [62, 64, 65], a
real-space renormalization group scheme [66] or other ad hoc approximations [67].

The steady-state particle density should scale as

ρL = D0C2L
−β/ν⊥Y ′(0, C2hL

d+θ−β/ν⊥
)∣∣

h=0 (50)

(borrowing notation from section 2, where the prime indicates the derivative with respect to
the second argument and h parametrizes a source of particles). That is standard finite-size
scaling without any readily identifiable universal amplitude and is therefore weaker than the
forms of sections 2 and 3. It is known from field theory that C2 is independent of r [54] while
it does depend on the branching ratio α/γ [63], which is compatible with our results.

(3) Having checked the scaling function universality in some examples with known
behaviour, we now illustrate how this universality might be used as a diagnostic tool.
Appealing to the experience gathered in equilibrium systems [4], universal amplitudes might
be expected to vary considerably more between distinct universality classes than critical
exponents. Therefore, even an approximate determination of universal amplitudes may allow
us to conclude on the universality class of the model at hand. Reconsider the phase diagram of
the pair contact process in figure 1. Presently, there is no consensus on how many universality
classes should be realized along the transition line between the active and inactive phases for
d �= 0, 1. As a starting point, we might consider pair mean-field theory, which predicts
two distinct universality classes along the two segments of the pair mean-field transition
curve [39]. The calculation of both steady-state and time-dependent critical exponents in
1D from simulations [46] appear to be in agreement with this prediction. On the other hand,
DMRG studies [39] and different simulations in 1D [44,45,68] only find evidence for a single
universality class along the transition line.

Here, we consider the ratio R = E3/E2 of the two lowest non-vanishing eigenvalues of H
for free boundary conditions as obtained from the DMRG. We use the Monte Carlo estimates
for pc(d) obtained by Grassberger [45]. R is equal to the ratio of two distinct relaxation times
and from equation (24) we expect R to be constant within a given universality class. Our
numerical results are shown in figure 2.

At first sight, it might be possible to separate the values of R into two classes, one for
smaller values of d (up to d ≈ 0.4–0.5) and a limit R∞ ∼ 2, and one for larger values of
d (above d ≈ 0.8) with a limit R∞ ∼ 3–4. The fact that R∞ is quite independent of d for
0.2 � d � 0.4 confirms the expected universality (R∞ = 1 in the inactive phase because there
all levels are twofold degenerate, see appendix).

However, closer inspection reveals that already for d = 0.5, the data for RL for L small
start out close to 4 and then begin to cross over to values close to 2. That signals the presence
of strong transient effects in this model. In addition, for the values of L for which data exist,
the values of R for both d = 0.8 and 0.9 are close together and quite close to 4. However,
these data, in particular for d = 0.8, also show indications that they might also cross over to
smaller values of R if L could be increased further. The lattice sizes available are not large
enough to be able to distinguish clearly between the possibilities of a single [39, 44, 45, 68]
or two [46] transitions, although the possibility of a single transition appears more likely. If
there is a change of the universality class along the critical line at all, figure 2 suggests that it
certainly should occur for d > 0.5.
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Figure 2. Ratio R = E3/E2 of the two lowest eigenvalues of H at the critical line p = pc(d) of
the pair contact process, for free boundary conditions and several values of d.

5. Conclusions

In this paper, we have tried to generalize Privman–Fisher [5] universality to (steady-state)
phase transitions with dynamical scaling. For equilibrium systems the standard arguments
carry over, the main ingredients being translation invariance and hyperscaling. With respect
to more standard renormalization group arguments, only the absence of non-universal metric
factors in front of the scaling function for ξ⊥,i in equation (23) is new. Equivalently, this may
be stated, see equation (24), as the universality of all ratios ξ‖,i/ξ‖,j .

Out of equilibrium, new arguments must be sought. In the special case of directed
percolation, the peculiar properties equations (33), (35) were seen to be sufficient for amplitude
universality. These properties may or may not be available in other universality classes, but we
found some numerical evidence in several reaction–diffusion systems that the universal finite-
size scaling forms (23), (24) might indeed hold in general. In the annihilation–coagulation
model and the pair contact process (inactive phase), we found that the finite-size scaling
amplitude of the leading relaxation time is indeed independent of the irrelevant parameters
we considered. Further evidence in favour of universality was found by studying the active–
inactive transition line in the pair contact process. In addition, our data for the ratio of the two
leading relaxation times appear to favour a single universality class along that transition line
for 0 < d < 1. It remains an open question how to derive the universal scaling forms (23), (24)
in general non-equilibrium systems.

Recently, the reaction–diffusion process 2A → A and A∅A → 3A has been studied [69].
If the coagulation rate is equal to the diffusion rate, the model is exactly solvable. It remains in
the universality class of diffusion–annihilation for all values of the particle production rate λ.
For periodic boundary conditions, the exact amplitude of the leading inverse relaxation time
is limL→∞ L2*L = 2π2d , independently of λ, as to be expected from (45), (46).

Finally, upon identification the universal finite-size scaling amplitude of the transverse
‘spatial’ correlation lengths ξ⊥,i , it might be tempting to ask if, in analogy to equilibrium [6–10],
there could be relations of universal finite-size scaling amplitudes with some exponents. To
answer this question would require a set of worked-out examples on which some hypothesis
of this kind could be tried out.



3348 M Henkel and U Schollwöck
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Appendix: Bethe ansatz calculation

We calculate the lowest gap * = E2 for p = 1 in the pair contact process and derive the
amplitude a in (46).

In the p = 1 case, only the pair annihilation AA → ∅∅ survives. It is well known [52]
that in this case, the quantum Hamiltonian can be decomposed H = H0 + H1 in such a way
that the eigenvalue spectrum of H is independent of H1, namely spec (H) = spec (H0). The
latter is related to the spectrum of the XXZ Heisenberg chain which can be found from the
coordinate Bethe ansatz [56, 57].

We begin with the periodic case. The spectrum-generating part of H is

H0 = dHXXZ(=, t) + 1
4 (1 + d)L (51)

where

HXXZ(=, t) = − 1
2

L∑
i=1

[
σx
i σ

x
i+1 + σ

y

i σ
y

i+1 + =σz
i σ

z
i+1 + tσ z

i

]
(52)

and

= = 3d − 1

2d
t = 1 − d

d
. (53)

Since the total spin Sz := ∑L
i=1 σ

z
i , commutes with HXXZ , the eigenstates H0|ψn〉 = En|ψn〉

can be classified in terms of the number n of reversed spins, namely Sz|ψn〉 = (L − 2n)|ψn〉.
The lowest states with n = 0, 1 have zero energy and correspond to the two steady states of
the model. The lowest gap * is found in the sector n = 2. From [57], one has

E2 = 2d(2 − cos k − cos k′) Lk = 2πI − D(k, k′) Lk′ = 2πI ′ − D(k′, k) (54)

where

D(k, k′) = 2 arctan
= sin((k − k′)/2)

cos((k + k′)/2) − = cos((k − k′)/2)
(55)

and I, I ′ = ± 1
2 ,± 3

2 , . . . are distinct half-integers. The total momentum of the corresponding
state is P = k + k′ = 2π(I + I ′)/L′. The lowest energy gap will have P = 0, or k′ = −k.
Furthermore, the lowest energy state corresponds to the choice I = −I ′ = 1/2, as can be
checked by considering the special case = = 0 (because of the symmetry between k and k′,
all levels are twofold degenerate). We find

* = 4d(1 − cos k) tan
Lk − π

2
= − = sin k

1 − = cos k
. (56)

For L large, the solution of the second equation (56) is

k � π

L

(
1 − 2=

1 − =

1

L
+ · · ·

)
. (57)

Inserting this into (56), we arrive indeed at the first case of equations (45), (46).
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Second, we consider free boundary conditions. The spectrum-generating part of H is

H0 = dHXXZ(=, t, r) + 1
4 (1 + d)(L − 1) (58)

HXXZ(=, t, r) = − 1
2

{
L−1∑
i=1

[
σx
i σ

x
i+1 + σ

y

i σ
y

i+1 + =σz
i σ

z
i+1

]
+ r

(
σ z

1 + σ z
L

)
+ t

L∑
i=1

σ z
i

}
(59)

where we used (53) and r = −t/2. Again, * will be the lowest energy in the n = 2 sector.
From the Bethe ansatz [56], one has

E2 = 2d(2 − cos k − cos k′) e2i(L−1)k =
(
f−k(r,=)

fk(r,=)

)2

e−iD(k,k′)+iD(−k,k′) (60)

where fk(a, b) = a − b + eik . A similar equation holds for k′, where k and k′ are exchanged
with respect to (60). The lowest excitations in the n = 2 sector are found for k′ = 0 (up to a
twofold degeneracy). Since r − = = −1, using (55) and taking the logarithm, we find

* = 2d(1 − cos k) Lk = π(I + 1) − 2 arctan

(
=

1 − =
tan

k

2

)
(61)

where I = 0, 1, 2, 3, . . . . The lowest gap is obtained for I = 0, as can be checked for
= = 0. In analogy to the periodic case, we rewrite the second equation in (61) in the form
tan((Lk − π)/2) = −=/(1 − =) tan(k/2). For L large, the solution is

k � π

L

(
1 − =

1 − =

1

L
+ · · ·

)
(62)

from which the second case in equations (45), (46) follows.
Evidently, for = = 0, that is d = 1/3, we recover for both boundary conditions the well

known results found from free-fermion methods. A second closed solution exists for d = 1/2
and free boundary conditions. Then = = 1/2 and the second of equations (61) reduces to
(L + 1)k = π(I + 1). The lowest gap is obtained for I = 0 and we arrive at (47). We also
remark that for the = = 1/2 XXZ chain with boundary terms such that Uq(sl(2)) invariance
holds, the Bethe ansatz equation can be solved analytically [58].
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